“特别能聊”的人工智能会聊出些什么?******
聊天机器人ChatGPT优异表现引发市场关注,人工智能生成内容概念走上风口
“特别能聊”的人工智能会聊出些什么?
本报记者 时斓娜
阅读提示
全新人工智能聊天机器人模型ChatGPT不仅能够通过学习人类的语言来进行对话,还能根据聊天的上下文进行互动,让人们更直观地感受到了人工智能的魅力。包括内容生成、搜索引擎增强等在内的领域,将是其潜在的产业化方向。ChatGPT的商业化落地,还需要克服技术和科技伦理等方面的问题。
家里要养一只猫,该如何给猫取名字?怎样写出一个纸牌游戏的代码?在不同语境中,词语“意思”到底有几个意思?这些五花八门、时常令人绞尽脑汁都难以得出答案的问题,在人工智能聊天机器人ChatGPT的面前,不过是瞬间便可迎刃而解的“一碟小菜”。
产品发布短短两个月,ChatGPT的日活量已突破千万,不少人“聊过”之后惊呼“这太像真正的人类了”。其超预期的表现引发越来越多的市场关注,人工智能生成内容(AIGC)概念由此走上风口。
人工智能聊天究竟能聊些啥?ChatGPT所代表的AIGC应用将带来哪些影响和变化?记者对此进行了调查采访。
“真正像人类一样聊天交流”
“我所热爱的是我真实的生活,因为它包含了我所有的经历和感受,是我每一天都在体验和思考的。”这句乍看上去充满了人类体悟和情感的话,实则出自人工智能聊天机器人ChatGPT。
随着ChatGPT大火,不少网友将它与自己的聊天记录分享到社交平台上,ChatGPT时而诙谐有趣,时而又显得思想深邃。除了各种聊天互动外,还有不少网友们将ChatGPT视为一种工具,让其写作文、翻译文章,甚至写代码。迅速的响应能力和较为靠谱的回答让大家直呼其“真正像人类一样聊天交流”“特别能聊”。
中国信息通信研究院联合中国人工智能产业发展联盟对ChatGPT进行的测试显示,ChatGPT在百科检索、数学问答、文学交流、常识问答、知识推理等对话任务上的意图识别率均达到98%左右,在生活闲聊上的意图识别率约为95%,已具备较好的语义理解能力。
实际上,ChatGPT属于生成式人工智能的一个典型应用。人工智能是怎样“进化”得如此智能的?“这是因为ChatGPT建立在大型语言模型上,会通过连接大量的语料库来训练模型。这些语料库包含了真实世界中的对话和各种网络公开信息,使ChatGPT知识丰富,还能根据上下文进行互动。”深度科技研究院院长张孝荣表示。
创新交互为AIGC带来新启发
随着人工智能技术的发展,近年来AIGC类型不断丰富、质量不断提升、技术的工程化水平越来越高,国内外科技公司纷纷发力布局AIGC领域。
以百度文心大模型为例,输入一个题目,它可以瞬间写出上百篇作文;根据一句话或者一段描述文本,可以生成一幅精美的画作;根据一幅图像,可以自动生成高清、流畅的视频。
在百度技术委员会主席吴华看来,ChatGPT在用户界面和交互上是一种比较创新的模式,用户更容易以自然语言的方式进行交互,这会给大家带来革新性的认识,也会给AIGC带来新的启发。
目前,国外一些公司在积极探索并落地ChatGPT的诸多应用场景,通过将ChatGPT整合进搜索引擎等方式提高服务智能化水平。有观点认为,ChatGPT将颠覆搜索行业,在智能客服、游戏、虚拟人等领域也将得到广泛应用。硅谷投资机构红杉预测,未来AIGC有潜力产生数万亿美元的经济价值。
根据中国信息通信研究院发布的《人工智能白皮书(2022年)》,“生成式人工智能”技术将广泛应用于智能写作、代码生成、有声阅读、新闻播报、语音导航、影像修复等领域,听说读写等能力的有机结合成为未来发展趋势。
“人工智能生成在诗歌、作曲、绘画等艺术创作方面大放异彩,在分子结构、软件代码等科研生产领域的应用不断拓展,还帮助降低临床试验的科研成本和缩短研发周期。”云计算与大数据研究所内容科技部副主任石霖表示,当前,人工智能生成内容的辐射范围还在扩大,未来有望重塑各行业领域的研发面貌。
商业化落地需克服技术和伦理问题
尽管各界对AIGC发展前景保持乐观,但从现状来看,ChatGPT等产品想要真正落地,还需要克服技术和科技伦理等方面的问题。
在对ChatGPT进行的种种评测中,ChatGPT会犯一些常识性错误,反映出其在可控性、准确率方面仍存不足。有人形容,ChatGPT像极了一个很能聊但有时候喜欢信口开河的人类朋友。
中国信息通信研究院评测结果同样显示,ChatGPT在非闲聊型对话的任务完成率上表现一般,难以摆脱传统深度学习模型普遍存在的知识整合和逻辑推理的问题。
“ChatGPT虽然能够较好地回答不少问题,但在一些略有深度的、专业性较强的领域,其答案往往‘捉襟见肘’。这说明ChatGPT语料库规模和计算能力的天然不足,也说明了算法依然需要完善。”张孝荣说。
在技术层面以外,人工智能还面临着悬而未决的科技伦理问题。张孝荣表示,ChatGPT在科技伦理方面至少面临三大挑战:“一是版权问题,ChatGPT生成的内容更多来自搬运,容易引发侵权;二是信息安全问题;三是社会缺乏接纳这一新生事物的准备机制,这对监管挑战很大。”
在国内,AIGC产业化路径同样有待探索。石霖介绍说,国内AIGC产业基础薄弱,相关初创公司数量明显少于国外。同时,国内企业目前仍处于打磨产品阶段,还未出现较为好用的内容生成服务。
你的隐私,大数据怎知道?我们又该如何自我保护?******
在网络上,每个人都会或多或少,或主动或被动地泄露某些碎片信息。这些信息被大数据挖掘,就存在隐私泄露的风险,引发信息安全问题。面对汹涌而来的5G时代,大众对自己的隐私保护感到越来越迷茫,甚至有点不知所措。那么,你的隐私,大数据是怎么知道的呢?大家又该如何自我保护呢?
1.“已知、未知”大数据都知道
大数据时代,每个人都有可能成为安徒生童话中那个“穿新衣”的皇帝。在大数据面前,你说过什么话,它知道;你做过什么事,它知道;你有什么爱好,它知道;你生过什么病,它知道;你家住哪里,它知道;你的亲朋好友都有谁,它也知道……总之,你自己知道的,它几乎都知道,或者说它都能够知道,至少可以说,它迟早会知道!
甚至,连你自己都不知道的事情,大数据也可能知道。例如,它能够发现你的许多潜意识习惯:集体照相时你喜欢站哪里呀,跨门槛时喜欢先迈左脚还是右脚呀,你喜欢与什么样的人打交道呀,你的性格特点都有什么呀,哪位朋友与你的观点不相同呀……
再进一步说,今后将要发生的事情,大数据还是有可能知道。例如,根据你“饮食多、运动少”等信息,它就能够推测出,你可能会“三高”。当你与许多人都在独立地购买感冒药时,大数据就知道:流感即将暴发了!其实,大数据已经成功地预测了包括世界杯比赛结果、股票的波动、物价趋势、用户行为、交通情况等。
当然,这里的“你”并非仅仅指“你个人”,包括但不限于,你的家庭,你的单位,你的民族,甚至你的国家等。至于这些你知道的、不知道的或今后才知道的隐私信息,将会把你塑造成什么,是英雄还是狗熊?这却难以预知。
2.数据挖掘就像“垃圾处理”
什么是大数据?形象地说,所谓大数据,就是由许多千奇百怪的数据,杂乱无章地堆积在一起。例如,你在网上说的话、发的微信、收发的电子邮件等,都是大数据的组成部分。在不知道的情况下被采集的众多信息,例如被马路摄像头获取的视频、手机定位系统留下的路线图、驾车的导航信号等被动信息,也都是大数据的组成部分。还有,各种传感器设备自动采集的有关温度、湿度、速度等万物信息,仍然是大数据的组成部分。总之,每个人、每种通信和控制类设备,无论它是软件还是硬件,其实都是大数据之源。
大数据利用了一种名叫“大数据挖掘”的技术,采用诸如神经网络、遗传算法、决策树、粗糙集、覆盖正例排斥反例、统计分析、模糊集等方法挖掘信息。大数据挖掘的过程,可以分为数据收集、数据集成、数据规约、数据清理、数据变换、挖掘分析、模式评估、知识表示等八大步骤。
不过,这些听起来高大上的大数据产业,几乎等同于垃圾处理和废品回收。
这并不是在开玩笑。废品收购和垃圾收集,可算作“数据收集”;将废品和垃圾送往集中处理场所,可算作“数据集成”;将废品和垃圾初步分类,可算作“数据规约”;将废品和垃圾适当清洁和整理,可算作“数据清理”;将破沙发拆成木、铁、布等原料,可算作“数据变换”;认真分析如何将这些原料卖个好价钱,可算作“数据分析”;不断总结经验,选择并固定上下游卖家和买家,可算作“模式评估”;最后,把这些技巧整理成口诀,可算作“知识表示”。
再看原料结构。大数据具有异构特性,就像垃圾一样千奇百怪。如果非要在垃圾和大数据之间找出本质差别的话,那就在于垃圾是有实体的,再利用的次数有限;而大数据是虚拟的,可以反复处理,反复利用。例如,大数据专家能将数据(废品)中挖掘出的旅客出行规律交给航空公司,将某群体的消费习惯卖给百货商店等。总之,大数据专家完全可以“一菜多吃”,反复利用,而且时间越久,价值越大。换句话说,大数据是很值钱的“垃圾”。
3.大数据挖掘永远没有尽头
大数据挖掘,虽然能从正面创造价值,但是也有其负面影响,即存在泄露隐私的风险。隐私是如何被泄露的呢?这其实很简单,我们先来分解一下“人肉搜索”是如何侵犯隐私的吧!
一大群网友,出于某种目的,利用自己的一切资源渠道,尽可能多地收集当事人或物的所有信息;然后,将这些信息按照自己的目的提炼成新信息,反馈到网上与别人分享。这就完成了第一次“人肉迭代”。
接着,大家又在第一次人肉迭代的基础上,互相取经,再接再厉,交叉重复进行信息的收集、加工、整理等工作,于是,便诞生了第二次“人肉迭代”。如此循环往复,经过多次不懈迭代后,当事人或物的画像就跃然纸上了。如果构成“满意画像”的素材确实已经证实,至少主体是事实,“人肉搜索”就成功了。
几乎可以断定,只要参与“人肉搜索”的网友足够多,时间足够长,大家的毅力足够强,那么任何人都可能无处遁形。
其实,所谓的大数据挖掘,在某种意义上说,就是由机器自动完成的特殊“人肉搜索”而已。只不过,这种搜索的目的,不再限于抹黑或颂扬某人,而是有更加广泛的目的,例如,为商品销售者寻找最佳买家、为某类数据寻找规律、为某些事物之间寻找关联等。总之,只要目的明确,那么,大数据挖掘就会有用武之地。
如果将“人肉搜索”与大数据挖掘相比,网友被电脑所替代;网友们收集的信息,被数据库中的海量异构数据所替代;网友寻找各种人物关联的技巧,被相应的智能算法替代;网友们相互借鉴、彼此启发的做法,被各种同步运算所替代。
各次迭代过程仍然照例进行,只不过机器的迭代次数更多,速度更快,每次迭代其实就是机器的一次“学习”过程。网友们的最终“满意画像”,被暂时的挖掘结果所替代。之所以说是暂时,那是因为对大数据挖掘来说,永远没有尽头,结果会越来越精准,智慧程度会越来越高,用户只需根据自己的标准,随时选择满意的结果就行了。
当然,除了相似性外,“人肉搜索”与“大数据挖掘”肯定也有许多重大的区别。例如,机器不会累,它们收集的数据会更多、更快,数据的渠道来源会更广泛。总之,网友的“人肉搜索”,最终将输给机器的“大数据挖掘”。
4.隐私保护与数据挖掘“危”“机”并存
必须承认,就当前的现实情况来说,大数据隐私挖掘的“杀伤力”,已经远远超过了大数据隐私保护的能力;换句话说,在大数据挖掘面前,当前人类有点不知所措。这确实是一种意外。自互联网诞生以后,在过去几十年,人们都不遗余力地将碎片信息永远留在网上。其中的每个碎片虽然都完全无害,可谁也不曾意识到,至少没有刻意去关注,当众多无害碎片融合起来,竟然后患无穷!
不过,大家也没必要过于担心。在人类历史上,类似的被动局面已经出现过不止一次了。从以往的经验来看,隐私保护与数据挖掘之间总是像“走马灯”一样轮换的——人类通过对隐私的“挖掘”,获得空前好处,产生了更多需要保护的“隐私”,于是,不得不再回过头来,认真研究如何保护这些隐私。当隐私积累得越来越多时,“挖掘”它们就会变得越来越有利可图,于是,新一轮的“挖掘”又开始了。历史地来看,人类在自身隐私保护方面,整体处于优势地位,在网络大数据挖掘之前,“隐私泄露”并不是一个突出的问题。
但是,现在人类需要面对一个棘手的问题——对过去遗留在网上的海量碎片信息,如何进行隐私保护呢?单靠技术,显然不行,甚至还会越“保护”,就越“泄露隐私”。
因此,必须多管齐下。例如从法律上,禁止以“人肉搜索”为目的的大数据挖掘行为;从管理角度,发现恶意的大数据搜索行为,对其进行必要的监督和管控。另外,在必要的时候,还需要重塑“隐私”概念,毕竟“隐私”本身就是一个与时间、地点、民族、文化等有关的约定俗成的概念。
对于个人的网络行为而言,在大数据时代,应该如何保护隐私呢?或者说,至少不要把过多包含个人隐私的碎片信息遗留在网上呢?答案只有两个字:匿名!只要做好匿名工作,就能在一定程度上,保护好隐私了。也就是说,在大数据技术出现之前,隐私就是把“私”藏起来,个人身份可公开,而大数据时代,隐私保护则是把“私”公开(实际上是没法不公开),而把个人身份隐藏起来,即匿名。
(作者:杨义先、钮心忻,均为北京邮电大学教授)
(文图:赵筱尘 巫邓炎)